Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic14

Direct product G=N×Q with N=C2 and Q=C22×Dic14
dρLabelID
C23×Dic14448C2^3xDic14448,1365


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic14
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic14) = C2×C4×Dic14central extension (φ=1)448C2.1(C2^2xDic14)448,920
C2.2(C22×Dic14) = C22×Dic7⋊C4central extension (φ=1)448C2.2(C2^2xDic14)448,1236
C2.3(C22×Dic14) = C22×C4⋊Dic7central extension (φ=1)448C2.3(C2^2xDic14)448,1238
C2.4(C22×Dic14) = C2×C282Q8central stem extension (φ=1)448C2.4(C2^2xDic14)448,921
C2.5(C22×Dic14) = C2×C28.6Q8central stem extension (φ=1)448C2.5(C2^2xDic14)448,922
C2.6(C22×Dic14) = C42.274D14central stem extension (φ=1)224C2.6(C2^2xDic14)448,923
C2.7(C22×Dic14) = C2×C22⋊Dic14central stem extension (φ=1)224C2.7(C2^2xDic14)448,934
C2.8(C22×Dic14) = C232Dic14central stem extension (φ=1)112C2.8(C2^2xDic14)448,936
C2.9(C22×Dic14) = C2×C28⋊Q8central stem extension (φ=1)448C2.9(C2^2xDic14)448,950
C2.10(C22×Dic14) = C2×C28.3Q8central stem extension (φ=1)448C2.10(C2^2xDic14)448,952
C2.11(C22×Dic14) = C14.72+ 1+4central stem extension (φ=1)224C2.11(C2^2xDic14)448,953
C2.12(C22×Dic14) = C42.88D14central stem extension (φ=1)224C2.12(C2^2xDic14)448,970
C2.13(C22×Dic14) = C42.90D14central stem extension (φ=1)224C2.13(C2^2xDic14)448,972
C2.14(C22×Dic14) = D4×Dic14central stem extension (φ=1)224C2.14(C2^2xDic14)448,990
C2.15(C22×Dic14) = D45Dic14central stem extension (φ=1)224C2.15(C2^2xDic14)448,992
C2.16(C22×Dic14) = D46Dic14central stem extension (φ=1)224C2.16(C2^2xDic14)448,996
C2.17(C22×Dic14) = Q8×Dic14central stem extension (φ=1)448C2.17(C2^2xDic14)448,1019
C2.18(C22×Dic14) = Q85Dic14central stem extension (φ=1)448C2.18(C2^2xDic14)448,1022
C2.19(C22×Dic14) = Q86Dic14central stem extension (φ=1)448C2.19(C2^2xDic14)448,1023
C2.20(C22×Dic14) = C2×C28.48D4central stem extension (φ=1)224C2.20(C2^2xDic14)448,1237

׿
×
𝔽